- J.C. Pickup, “Diabetes: Insulin pumps after injections and CGM in T1DM,” Nature Reviews Endocrinology, vol.13, no.10, pp.568-569, 2017. 10.1038/nrendo.2017.108
- F. Waldron-Lynch and K.C. Herold, “Continuous glucose monitoring: long live the revolution!,” Nature Clinical Practice Endocrinology & Metabolism, vol.5, no.2, pp.82-83, 2009. 10.1038/ncpendmet1044
- A. Blum, “Freestyle Libre Glucose Monitoring System,” Clinical Diabetes, vol.36, no.2, pp.203-204, April 2018. 10.2337/cd17-0130
- Y.-T. Liao, H. Yao, A. Lingley, B. Parviz, and B.P. Otis, “A 3-µW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring,” IEEE J. Solid-State Circuits, vol.47, no.1, pp.335-344, April 2012. 10.1109/jssc.2011.2170633
- R. Cabrera, I. Weaver, A. Banerjee, R. Sarpeshkar, and T. Thorsen, “Fabrication of Implantable Glucose Fuel Cells on Silicon Wafers,” ECS Trans., vol.72, no.3, pp.31-38, May 2016. 10.1149/07203.0031ecst
- S. Arata, K. Hayashi, X. Ge, S. Murakami, C.D. Bui, A. Kobayashi, and K. Niitsu, “12% Yield and 370-mV OCV of 0.36mm2 Solid-State CMOS-Compatible Glucose Fuel Cell by Using Repeated Separator Coating,” Proc. Int. Conf. on Solid State Devices and Materials, pp.559-560, Sept. 2018.
- K. Hayashi, S. Arata, S. Murakami, Y. Nishio, A. Kobayashi, and K. Niitsu, “A 6.1-nA Fully Integrated CMOS Supply Modulated OOK Transmitter in 55-nm DDC CMOS for Glasses-Free, Self-Powered, and Fuel-Cell-Embedded Continuous Glucose Monitoring Contact Lens,” Proc. IEEE TCAS-II, vol.65, no.10, pp.1360-1364, July 2018. 10.1109/tcsii.2018.2860636
- W. Jung, S. Oh, S. Bang, Y. Lee, D. Sylvester, and D. Blaauw, “23.3 A 3nW fully integrated energy harvester based on self-oscillating switched-capacitor DC-DC converter,” Proc. IEEE ISSCC, pp.398-399, Feb. 2014. 10.1109/isscc.2014.6757486
- A. Kobayashi, K. Ikeda, Y. Ogawa, H. Kai, M. Nishizawa, K. Nakazato, and K. Niitsu, “Design and experimental verification of 0.19V 53µW 65nm CMOS integrated supply-sensing sensor with a supply-insensitive temperature sensor and inductive-coupling transmitter for a self-powered bio-sensing using a biofuel cell,” IEEE TBioCAS, vol.11, no.6, pp.1313-1323, Dec. 2017. 10.1109/tbcas.2017.2735447
- J. Choi, E. Aklimi, C. Shi, D. Tsai, H. Krishnaswamy, and K.L. Shepard, “Matching the Power, Voltage, and Size of Biological Systems: A nW-Scale, 0.023-mm3 Pulsed 33-GHz Radio Transmitter Operating From a 5 kT/q-Supply Voltage,” IEEE TCAS-I, vol.62, no.8, pp.1950-1958, Aug. 2015. 10.1109/tcsi.2015.2426958
- M. Lanuzza, F. Crupi, S. Rao, R. De Rose, S. Strangio, and G. Iannaccone, “An Ultralow-Voltage Energy-Efficient Level Shifter,” IEEE Trans. Circuits Syst. II, vol.64, no.1, pp.61-65, Jan. 2017. 10.1109/tcsii.2016.2538724
- S. Bandyopadhyay, P.P. Mercier, A.C. Lysaght, K.M. Stankovic, and A.P. Chandrakasan, “A 1.1 nW Energy-Harvesting System with 544 pW Quiescent Power for Next-Generation Implants,” IEEE J. Solid-State Circuits, vol.49, no.12, pp.2812-2824, Dec. 2014. 10.1109/jssc.2014.2350260
- S. Arata, K. Hayashi, Y. Nishio, A. Kobayashi, K. Nakazato, and K. Niitsu, “Wafer-scale development and experimental verification of 0.36mm2 228mV open-circuit-voltage solid-state CMOS-compatible glucose fuel cell,” Jpn. J. Appl. Phys., vol.57, no.4S, p.04FM04, March 2018. 10.7567/jjap.57.04fm04
- K. Hayashi, S. Arata, G. Xu, S. Murakami, C.D. Bui, T. Doike, M. Matsunaga, A. Kobavashi, and K. Niitsu, “A 385µm × 385µm 0.165V 0.27nW Fully-Integrated Supply-Modulated OOK CMOS TX in 65nm CMOS for Glasses-Free, Self-Powered, and Fuel-Cell-Embedded Continuous Glucose Monitoring Contact Lens,” Proc. IEEE BioCAS, pp.379-382, Oct. 2018. 10.1109/biocas.2018.8584660
- M. R. Stratton, "Exploring the genomes of cancer cells: Progress and promise", Science, vol. 331, no. 6024, pp. 1553-155, Mar. 2011.
- R. F. Swaby, M. Cristofanilli, "Circulating tumor cells in breast cancer: A tool whose time has come of age", BMC Med., vol. 9, no. 43, pp. 1-7, Apr. 2011.
- D. Marrinucci, "Fluid biopsy in patients with metastatic prostate pancreatic and breast cancers", Phys. Biol., vol. 9, no. 1, pp. 1-9, Feb. 2012.
- M. C. Miller, G. V. Doyle, L. W. Terstappen, "Significance of circulating tumor cells detected by the cellsearch system in patients with metastatic breast colorectal and prostate cancer", J. Oncol., pp. 1-8, Jan. 2010.
- A. M. Sieuwerts, "mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients", Clin. Cancer Res., vol. 17, no. 11, pp. 3600-3618, Jun. 2011.
- E. Heitzer, S. Perakis, J. B. Geigl, M. R. Speicher, "The potential of liquid biopsies for the early detection of cancer", NPJ Precis. Oncol., vol. 1, no. 36, pp. 1-9, 2017.
- T. Hase et al., "Development of microfluidic devices for rapid low-cost detection of EGFR mutations in cytological samples from patients with lung cancer", Proc. 16th IASLC World Conf. Lung Cancer, Sep. 2015.
- L. Y. Zhang, A. Landoulsi, C. Bounaix, M. du Punch, "Label-free colorectal cancer cell line bio-sensing using RF resonator", Proc. Int. Solid-State Sens. Actuators Microsyst Conf., pp. 1194-1197, Jun. 2013.
- M. Rezaei, E. Ebrahimi, S. Naseh, M. Mohajerpour, "A new 1.4 GHz soil moisture sensor", Measurement, vol. 45, no. 7, pp. 1723-1728, Aug. 2012.
- H. Lee et al., "A planar split-ring resonator-based microwave biosensor for label-free detection of biomolecules", Sens. Actuators B Chem., vol. 169, pp. 26-31, Jul. 2012.
- A. Ebrahimi, W. Withayachumnankul, S. F. Al-Sarawi, D. Abbott, "Microwave microfluidic sensor for determination of glucose concentrtion in water", Proc. IEEE 15th Mediterranean Microw. Symp., pp. 1-3, Nov. 2015.
- H. W. Wu, "Label-Free and antibody-free wideband microwave biosensor for identifying the cancer cells", IEEE Trans. Microw. Theory Tech., vol. 64, no. 3, pp. 982-990, Mar. 2016.
- T. Nakanishi, M. Matsunaga, A. Kobayashi, K. Nakazato, K. Niitsu, "A fully-integrated circulating tumor cell analyzer using an on-chip vector network analyzer and a transmission-line-based detection window in 65-nm CMOS", Proc. IEEE Biomed. Circuits Syst. Conf., pp. 1-4, Oct. 2017.
- T. Nakanishi, M. Matsunaga, A. Kobayashi, K. Nakazato, K. Niitsu, "A 40-GHz fully integrated circulating tumor cell analysis vector network analyzer in 65-nm CMOS technology with coplanar-line-based detection area", Jpn. J. Appl. Phys., vol. 57, no. 3S2, Jan. 2018.
- J. Sun, C. Li, "A highly reconfigurable low-power CMOS directional coupler", IEEE Trans. Microw. Theory Techni., vol. 60, no. 9, pp. 2815-2822, Sep. 2012.
- X. Fan, H. Zhang, E. Sánchez-Sinencio, "A noise reduction and linearity improvement technique for a differential Cascode LNA", IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 588-599, Mar. 2008.
- K. Niitsu, S. Ota, K. Gamo, H. Kondo, M. Hori, K. Nakazato, "Development of microelectrode arrays using electroless plating for CMOS-Based direct counting of bacterial and HeLa cells", IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 5, pp. 607-619, Nov. 2015.
- T. Kuno, K. Niitsu, K. Nakazato, "Amperometric electrochemical sensor array for on-chip simultaneous imaging", Jpn. J. Appl. Phys., vol. 53, Feb. 2014.
- V. Filipe, A. Hawe, W. Jiskoot, "Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates", Pharmaceutical Res., vol. 27, no. 5, pp. 796-810, May 2010.
- V. Filipe, A. Hawe, W. Jiskoot, "Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates", Pharmaceutical Res., vol. 27, no. 5, pp. 796-810, May 2010.
- Y.-T. Liao, H. Yao, A. Lingley, B. Parviz, B. P. Otis, " A 3- \$mutext{W}\$ CMOS glucose sensor for wireless contact-lens tear glucose monitoring ", IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 335-344, Jan. 2012.
- R. Cabrera, I. Weaver, A. Banerjee, R. Sarpeshkar, T. Thorsen, "(Invited) fabrication of implantable glucose fuel cells on silicon wafers", ECS Trans., vol. 72, no. 3, pp. 31-38, May 2016.
- S. Arata et al., " Wafer-scale development and experimental verification of 0.36-mm 2 228-mV open-circuit-voltage solid-state CMOS-compatible glucose fuel cell for healthcare IoT application ", Jpn. J. Appl. Phys., vol. 57, pp. 04FM04, Mar. 2018, [online] Available: http://iopscience.iop.org/article/10.7567/JJAP.57.04FM04/meta.
- S. Bandyopadhyay, P. P. Mercier, A. C. Lysaght, K. M. Stankovic, A. P. Chandrakasan, "A 1.1 nW energy-harvesting system with 544 pW quiescent power for next-generation implants", IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 2812-2824, Dec. 2014.
- J. Choi et al., " Matching the power voltage and size of biological systems: A nW-scale 0.023-mm 3 pulsed 33-GHz radio transmitter operating from a 5 kT/q-supply voltage ", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 62, no. 8, pp. 1950-1958, Aug. 2015.
- W. Jung et al., "23.3 A 3nW fully integrated energy harvester based on self-oscillating switched-capacitor DC-DC converter", Proc. IEEE Int. Solid-State Circuits Conf., pp. 398-399, Feb. 2014.
- K. Niitsu et al., "A self-powered supply-sensing biosensor platform using bio fuel cell and low-voltage low-cost CMOS supply-controlled ring oscillator with inductive-coupling transmitter for healthcare IoT", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 65, no. 9, pp. 2784-2796, Sep. 2018, [online] Available: https://ieeexplore.ieee.org/document/8327508/.
- A. Kobayashi et al., " Design and experimental verification of a 0.19 V \$53~mutext{W}\$ 65 nm CMOS integrated supply-sensing sensor with a supply-insensitive temperature sensor and an inductive-coupling transmitter for a self-powered bio-sensing system using a biofuel cell ", IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 6, pp. 1313-1323, Dec. 2017.
- A. F. Yeknami et al., " A 0.3V biofuel-cell-powered glucose/lactate biosensing system employing a 180nW 64dB SNR passive \$DeltaSigma\$ ADC and a 920MHz wireless transmitter ", Proc. IEEE Int. Solid-State Circuits Conf., pp. 284-286, Feb. 2018.
- X. Chen et al., "A wireless capsule endoscope system with low-power controlling and processing ASIC", IEEE Trans. Biomed. Circuits Syst., vol. 3, no. 1, pp. 11-22, Feb. 2009.
- S. B. Lee, H.-M. Lee, M. Kiani, U.-M. Jow, M. Ghovanloo, "An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications", IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 6, pp. 360-371, Dec. 2010.
- A. Roy et al., " A \$6.45~mu text{W}\$ self-powered SoC with integrated energy-harvesting power management and ULP asymmetric radios for portable biomedical systems ", IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 6, pp. 862-874, Dec. 2015.
- Y. Ogawa et al., "Organic transdermal iontophoresis patch with built-in biofuel cell", Adv. Healthcare Mater., vol. 4, no. 4, pp. 506-510, Mar. 2015.
- T. Miyake, S. Yoshino, T. Yamada, K. Hata, M. Nishizawa, "Self-regulating enzyme–nanotube ensemble films and their application as flexible electrodes for biofuel cells", J. Amer. Chem. Soc., vol. 133, no. 13, pp. 5129-5134, Mar. 2011.
- T. Miyake et al., "Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms", Energy Environ. Sci., vol. 4, no. 12, pp. 5008-5012, Dec. 2011.
- B. I. Rapoport, J. T. Kedzierski, R. Sarpeshkar, "A glucose fuel cell for implantable brain–machine interfaces", PLoS ONE, vol. 7, no. 6, pp. e38436, Jun. 2012.
- N. Miura, Y. Kohama, Y. Sugimori, H. Ishikuro, T. Sakurai, T. Kuroda, "A high-speed inductive-coupling link with burst transmission", IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 947-955, Mar. 2009.
- Y.-T. Liao, H. Yao, A. Lingley, B. Parviz, B. P. Otis, " A 3- \$mu text{W}\$ CMOS glucose sensor for wireless contact-lens tear glucose monitoring ", IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 335-344, Jan. 2012.
- H. Komori, K. Niitsu, J. Tanaka, Y. Ishige, M. Kamahori, K. Nakazato, "An extended-gate CMOS sensor array with enzyme-immobilized microbeads for redox-potential glucose detection", Proc. IEEE Biomed. Circuits Syst. Conf., pp. 464-467, Oct. 2014.
- K. Niitsu, S. Ota, K. Gamo, H. Kondo, M. Hori, K. Nakazato, "Development of microelectrode arrays using electroless plating for CMOS-based direct counting of bacterial and HeLa cells", IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 5, pp. 607-619, Oct. 2015.
- T. Tokuda et al., "CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel", Biomed. Opt. Exp., vol. 5, no. 11, pp. 3840-3870, Nov. 2014.
- F. Zhang, Y. Lian, "QRS detection based on multiscale mathematical morphology for wearable ECG devices in body area networks", IEEE Trans. Biomed. Circuits Syst., vol. 3, no. 4, pp. 220-228, Aug. 2009.
- M. Khayatzadeh, X. Zhang, J. Tan, W.-S. Liew, Y. Lian, " A 0.7-V 17.4- \$mu text{W}\$ 3-lead wireless ECG SoC ", IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 5, pp. 583-592, Oct. 2013.
- X. Zhang, Y. Lian, "A 300-mV 220-nW event-driven ADC with real-time QRS detection for wearable ECG sensors", IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 6, pp. 834-843, Dec. 2014.
- J. Tan, W.-S. Liew, C.-H. Heng, Y. Lian, "A 2.4 GHz ULP reconfigurable asymmetric transceiver for single-chip wireless neural recording IC", IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 4, pp. 497-509, Aug. 2014.
- S. Izumi et al., "Normally off ECG SoC with non-volatile MCU and noise tolerant heartbeat detector", IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 5, pp. 641-651, Oct. 2015.
- S. Izumi et al., " A wearable healthcare system with a \$13.7~mu text{A}\$ noise tolerant ECG processor ", IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 5, pp. 733-742, Oct. 2015.
- K. Niitsu, A. Kobayashi, Y. Ogawa, M. Nishizawa, K. Nakazato, " An energy-autonomous disposable big-data-based supply-sensing biosensor using bio fuel cell and 0.23-V 0.25- \$mu text{m}\$ zero- \$text{V}_{th}\$ all-digital CMOS supply-controlled ring oscillator with inductive transmitter ", IEEE Biomed. Circuits Syst. Conf. (ISSCC) Dig. Tech. Papers, pp. 595-598, Oct. 2015.
- N. Miura, D. Mizoguchi, M. Inoue, H. Tsuji, T. Sakurai, T. Kuroda, "A 195Gb/s 1.2W 3D-stacked inductive inter-chip wireless superconnect with transmit power control scheme", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 264-265, Feb. 2005.
- A. Iwata et al., "A 3D integration scheme utilizing wireless interconnections for implementing hyper brains", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 262-263, Feb. 2005.
- N. Miura et al., "A 1 Tb/s 3 W inductive-coupling transceiver for 3D-stacked inter-chip clock and data link", IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 111-122, Jan. 2007.
- K. Niitsu et al., "60% power reduction in inductive-coupling inter-chip link by current-sensing technique", Jpn. J. Appl. Phys., vol. 46, no. 4B, pp. 2215-2219, Apr. 2007.
- K. Niitsu et al., "Daisy chain transmitter for power reduction in inductive-coupling CMOS link", IEICE Trans. Electron., vol. E90-C, no. 4, pp. 829-835, Apr. 2007.
- D. Hopkins et al., " Circuit techniques to enable 430 Gb/s/mm 2 proximity communication ", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 368-369, Feb. 2007.
- A. Fazzi et al., "3D capacitive interconnections with mono- and bi-directional capabilities", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 356-357, Feb. 2007.
- Q. Gu, Z. Xu, J. Ko, M.-C. F. Chang, "Two 10Gb/s/pin low-power interconnect methods for 3D ICs", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 448-449, Feb. 2007.
- M. Daito et al., "Capacitively coupled non-contact probing circuits for membrane-based wafer-level simultaneous testing", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 144-145, Feb. 2010.
- K. Niitsu, S. Kawai, N. Miura, H. Ishikuro, T. Kuroda, "A 65fJ/b inter-chip inductive-coupling data transceivers using charge-recycling technique for low-power inter-chip communication in 3-D system integration", IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 7, pp. 1285-1294, Jul. 2012.
- K. Niitsu et al., "An inductive-coupling link for 3D integration of a 90 nm CMOS processor and a 65 nm CMOS SRAM", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 480-481, Feb. 2009.
- K. Niitsu et al., "Modeling and experimental verification of misalignment tolerance in inductive-coupling inter-chip link for low-power 3-D system integration", IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 8, pp. 1238-1243, Aug. 2010.
- K. Niitsu et al., "Analysis and techniques for mitigating interference from power/signal lines and to SRAM circuits in CMOS inductive-coupling link for low-power 3-D system integration", IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 10, pp. 1902-1907, Oct. 2011.
- M. Saen et al., "3-D system integration of processor and multi-stacked SRAMs using inductive-coupling link", IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 856-862, Apr. 2010.
- Y. Kohama et al., "A scalable 3D processor by homogeneous chip stacking with inductive-coupling link", Proc. IEEE Symp. VLSI Circuits, pp. 94-95, Jun. 2009.
- N. Miura et al., "A 0.55 V 10 fJ/bit inductive-coupling data link and 0.7 V 135 fJ/cycle clock link with dual-coil transmission scheme", IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 965-973, Apr. 2011.
- T. A. Wey, M. Southcott, W. D. Jemison, K. MacVittie, E. Katz, " Electrical circuit model and dynamic analysis of implantable enzymatic biofuel cells operating in vivo ", Proc. IEEE, vol. 102, no. 11, pp. 1795-1810, Nov. 2014.
- J. A. Stankovic, "Research directions for the internet of things", IEEE Internet Things J., vol. 1, no. 1, pp. 3-9, Feb. 2014.
- A. Pantelopoulos, N. G. Bourbakis, "A survey on wearable sensor-based systems for health monitoring and prognosis", IEEE Trans. Syst. Man Cybern. C Appl. Rev., vol. 40, no. 1, pp. 1-12, Jan. 2010.
- G. Matzeu, L. Florea, D. Diamond, "Advances in wearable chemical sensor design for monitoring biological fluids", Sens. Actuators B Chem., vol. 211, pp. 403-418, May 2015.
- Y. T. Liao, H. Yao, A. Lingley, B. Parviz, B. P. Otis, "A 3-μW CMOS glucose sensor for wireless contact-lens tear glucose monitoring", IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 335-344, Jan. 2012.
- M. M. Ahmadi, G. A. Jullien, "A wireless-implantable microsystem for continuous blood glucose monitoring", IEEE Trans. Biomed. Circuits Syst., vol. 3, no. 3, pp. 169-180, Jun. 2009.
- R. J. M. Vullers, R. van Schaijk, I. Doms, C. V. Hoof, R. Mertens, "Micropower energy harvesting", Solid-State Electron., vol. 53, no. 7, pp. 684-693, Jul. 2009.
- S. Bandyopadhyay, P. P. Mercier, A. C. Lysaght, K. M. Stankovic, A. P. Chandrakasan, "A 1.1 nW energy-harvesting system with 544 pW quiescent power for next-generation implants", IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 2812-2824, Dec. 2014.
- R. F. Drake, B. K. Kusserow, S. Messinger, S. Matsuda, "A tissue implantable fuel cell power supply", Trans. Amer. Soc. Artif. Internal Organs, vol. 16, pp. 199-205, Apr. 1970.
- B. I. Rapoport, J. T. Kedzierski, R. Sarpeshkar, "A glucose fuel cell for implantable brain–machine interfaces", PLOS One, vol. 7, no. 6, Jun. 2012.
- Y. Ogawa et al., "Organic transdermal iontophoresis patch with built-in biofuel cell", Adv. Healthcare Mater., vol. 4, no. 4, pp. 506-510, Mar. 2015.
- W. Jia, G. Valdés-Ramírez, A. J. Bandodkar, J. R. Windmiller, J. Wang, "Epidermal biofuel cells: Energy harvesting from human perspiration", Angew. Chem. Int. Ed., vol. 52, no. 28, pp. 7233-7236, May 2013.
- M. Zhou, "Recent progress on the development of biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review", Electroanalysis, vol. 27, no. 8, pp. 1786-1810, Jun. 2015.
- N. Mano, F. Mao, A. Heller, " Characteristics of a miniature compartment-less glucose-O 2 biofuel cell and its operation in a living plant ", J. Amer. Chem. Soc., vol. 125, no. 21, pp. 6588-6594, Apr. 2003.
- K. MacVittie et al., "From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells", Energy Environ. Sci., vol. 6, no. 1, pp. 81-86, Jan. 2013.
- K. Niitsu, A. Kobayashi, Y. Ogawa, M. Nishizawa, K. Nakazato, "An energy-autonomous disposable big-data-based supply-sensing biosensor using bio fuel cell and 0.23-V 0.25-μm zero-Vth all-digital CMOS supply-controlled ring oscillator with inductive transmitter", Proc. IEEE Biomed. Circuits Syst. Conf., pp. 595-598, Oct. 2015.
- A. Kobayashi, K. Ikeda, Y. Ogawa, M. Nishizawa, K. Nakazato, K. Niitsu, "An energy-autonomous bio-sensing system using a biofuel cell and 0.19 V 53 μW 65 nm-CMOS integrated supply-sensing sensor with a supply-insensitive temperature sensor and inductive-coupling transmitter", Proc. IEEE Biomed. Circuits Syst. Conf., pp. 148-151, Oct. 2016.
- P. P. Mercier, S. Bandyopadhyay, A. C. Lysaght, K. M. Stankovic, A. P. Chandrakasan, "A sub-nW 2.4 GHz transmitter for low data-rate sensing applications", IEEE J. Solid-State Circuits, vol. 49, no. 7, pp. 1463-1474, Jul. 2014.
- Y.-S. Lin, D. Sylvester, D. Blaauw, "A sub-pW timer using gate leakage for ultra low-power sub-Hz monitoring systems", Proc. IEEE Custom Integr. Circuits Conf., pp. 397-400, Sep. 2007.
- Y. Lee, B. Giridhar, Z. Foo, D. Sylvester, D. B. Blaauw, "A sub-nW multi-stage temperature compensated timer for ultra-low-power sensor nodes", IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2511-2521, Oct. 2013.
- H. Wang, P. P. Mercier, "A reference-free capacitive-discharging oscillator architecture consuming 44.4 pW/75.6 nW at 2.8 Hz/6.4 kHz", IEEE J. Solid-State Circuits, vol. 51, no. 6, pp. 1423-1435, Jun. 2016.
- M. K. Law, A. Bermak, H. C. Luong, "A sub-μW embedded CMOS temperature sensor for RFID food monitoring application", IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1246-1255, Jun. 2010.
- S. Jeong, Z. Foo, Y. Lee, J.-Y. Sim, D. Blaauw, D. Sylvester, "A fully-integrated 71 nW CMOS temperature sensor for low power wireless sensor nodes", IEEE J. Solid-State Circuits, vol. 49, no. 8, pp. 1682-1693, Aug. 2014.
- M. Seok, G. Kim, D. Blaauw, D. Sylvester, "A portable 2-transistor picowatt temperature-compensated voltage reference operating at 0.5 V", IEEE J. Solid-State Circuits, vol. 47, no. 10, pp. 2534-2545, Oct. 2012.
- K. Niitsu et al., "An inductive-coupling link for 3D integration of a 90nm CMOS processor and a 65 nm CMOS SRAM", Proc. IEEE Int. Solid-State Circuits Conf., pp. 480-481, Feb. 2009.
- N. Miura, D. Mizoguchi, T. Sakurai, T. Kuroda, "Analysis and design of inductive coupling and transceiver circuit for inductive inter-chip wireless superconnect", IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 829-837, Apr. 2005.
- S. S. Mohan, M. M. Hershenson, S. P. Boyd, T. H. Lee, "Simple accurate expressions for planar spiral inductances", IEEE J. Solid-State Circuits, vol. 34, no. 10, pp. 1419-1424, Oct. 1999.
- G. Valdés-Ramírez et al., "Microneedle-based self-powered glucose sensor", Electrochem. Commun., vol. 47, pp. 58-62, Oct. 2014.