1.  J.C. Pickup, “Diabetes: Insulin pumps after injections and CGM in T1DM,” Nature Reviews Endocrinology, vol.13, no.10, pp.568-569, 2017. 10.1038/nrendo.2017.108 
  2.  F. Waldron-Lynch and K.C. Herold, “Continuous glucose monitoring: long live the revolution!,” Nature Clinical Practice Endocrinology & Metabolism, vol.5, no.2, pp.82-83, 2009. 10.1038/ncpendmet1044 
  3. A. Blum, “Freestyle Libre Glucose Monitoring System,” Clinical Diabetes, vol.36, no.2, pp.203-204, April 2018. 10.2337/cd17-0130
  4. Y.-T. Liao, H. Yao, A. Lingley, B. Parviz, and B.P. Otis, “A 3-µW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring,” IEEE J. Solid-State Circuits, vol.47, no.1, pp.335-344, April 2012. 10.1109/jssc.2011.2170633 
  5. R. Cabrera, I. Weaver, A. Banerjee, R. Sarpeshkar, and T. Thorsen, “Fabrication of Implantable Glucose Fuel Cells on Silicon Wafers,” ECS Trans., vol.72, no.3, pp.31-38, May 2016. 10.1149/07203.0031ecst
  6. S. Arata, K. Hayashi, X. Ge, S. Murakami, C.D. Bui, A. Kobayashi, and K. Niitsu, “12% Yield and 370-mV OCV of 0.36mm2 Solid-State CMOS-Compatible Glucose Fuel Cell by Using Repeated Separator Coating,” Proc. Int. Conf. on Solid State Devices and Materials, pp.559-560, Sept. 2018.
  7. K. Hayashi, S. Arata, S. Murakami, Y. Nishio, A. Kobayashi, and K. Niitsu, “A 6.1-nA Fully Integrated CMOS Supply Modulated OOK Transmitter in 55-nm DDC CMOS for Glasses-Free, Self-Powered, and Fuel-Cell-Embedded Continuous Glucose Monitoring Contact Lens,” Proc. IEEE TCAS-II, vol.65, no.10, pp.1360-1364, July 2018. 10.1109/tcsii.2018.2860636
  8. W. Jung, S. Oh, S. Bang, Y. Lee, D. Sylvester, and D. Blaauw, “23.3 A 3nW fully integrated energy harvester based on self-oscillating switched-capacitor DC-DC converter,” Proc. IEEE ISSCC, pp.398-399, Feb. 2014. 10.1109/isscc.2014.6757486
  9. A. Kobayashi, K. Ikeda, Y. Ogawa, H. Kai, M. Nishizawa, K. Nakazato, and K. Niitsu, “Design and experimental verification of 0.19V 53µW 65nm CMOS integrated supply-sensing sensor with a supply-insensitive temperature sensor and inductive-coupling transmitter for a self-powered bio-sensing using a biofuel cell,” IEEE TBioCAS, vol.11, no.6, pp.1313-1323, Dec. 2017. 10.1109/tbcas.2017.2735447
  10. J. Choi, E. Aklimi, C. Shi, D. Tsai, H. Krishnaswamy, and K.L. Shepard, “Matching the Power, Voltage, and Size of Biological Systems: A nW-Scale, 0.023-mm3 Pulsed 33-GHz Radio Transmitter Operating From a 5 kT/q-Supply Voltage,” IEEE TCAS-I, vol.62, no.8, pp.1950-1958, Aug. 2015. 10.1109/tcsi.2015.2426958
  11. M. Lanuzza, F. Crupi, S. Rao, R. De Rose, S. Strangio, and G. Iannaccone, “An Ultralow-Voltage Energy-Efficient Level Shifter,” IEEE Trans. Circuits Syst. II, vol.64, no.1, pp.61-65, Jan. 2017. 10.1109/tcsii.2016.2538724 
  12. S. Bandyopadhyay, P.P. Mercier, A.C. Lysaght, K.M. Stankovic, and A.P. Chandrakasan, “A 1.1 nW Energy-Harvesting System with 544 pW Quiescent Power for Next-Generation Implants,” IEEE J. Solid-State Circuits, vol.49, no.12, pp.2812-2824, Dec. 2014. 10.1109/jssc.2014.2350260
  13. S. Arata, K. Hayashi, Y. Nishio, A. Kobayashi, K. Nakazato, and K. Niitsu, “Wafer-scale development and experimental verification of 0.36mm2 228mV open-circuit-voltage solid-state CMOS-compatible glucose fuel cell,” Jpn. J. Appl. Phys., vol.57, no.4S, p.04FM04, March 2018. 10.7567/jjap.57.04fm04
  14. K. Hayashi, S. Arata, G. Xu, S. Murakami, C.D. Bui, T. Doike, M. Matsunaga, A. Kobavashi, and K. Niitsu, “A 385µm × 385µm 0.165V 0.27nW Fully-Integrated Supply-Modulated OOK CMOS TX in 65nm CMOS for Glasses-Free, Self-Powered, and Fuel-Cell-Embedded Continuous Glucose Monitoring Contact Lens,” Proc. IEEE BioCAS, pp.379-382, Oct. 2018. 10.1109/biocas.2018.8584660
  15. M. R. Stratton, "Exploring the genomes of cancer cells: Progress and promise", Science, vol. 331, no. 6024, pp. 1553-155, Mar. 2011.
  16.  R. F. Swaby, M. Cristofanilli, "Circulating tumor cells in breast cancer: A tool whose time has come of age", BMC Med., vol. 9, no. 43, pp. 1-7, Apr. 2011.
  17. D. Marrinucci, "Fluid biopsy in patients with metastatic prostate pancreatic and breast cancers", Phys. Biol., vol. 9, no. 1, pp. 1-9, Feb. 2012.
  18.  M. C. Miller, G. V. Doyle, L. W. Terstappen, "Significance of circulating tumor cells detected by the cellsearch system in patients with metastatic breast colorectal and prostate cancer", J. Oncol., pp. 1-8, Jan. 2010.
  19. A. M. Sieuwerts, "mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients", Clin. Cancer Res., vol. 17, no. 11, pp. 3600-3618, Jun. 2011.
  20. E. Heitzer, S. Perakis, J. B. Geigl, M. R. Speicher, "The potential of liquid biopsies for the early detection of cancer", NPJ Precis. Oncol., vol. 1, no. 36, pp. 1-9, 2017.
  21. T. Hase et al., "Development of microfluidic devices for rapid low-cost detection of EGFR mutations in cytological samples from patients with lung cancer", Proc. 16th IASLC World Conf. Lung Cancer, Sep. 2015.
  22. L. Y. Zhang, A. Landoulsi, C. Bounaix, M. du Punch, "Label-free colorectal cancer cell line bio-sensing using RF resonator", Proc. Int. Solid-State Sens. Actuators Microsyst Conf., pp. 1194-1197, Jun. 2013.
  23. M. Rezaei, E. Ebrahimi, S. Naseh, M. Mohajerpour, "A new 1.4 GHz soil moisture sensor", Measurement, vol. 45, no. 7, pp. 1723-1728, Aug. 2012.
  24. H. Lee et al., "A planar split-ring resonator-based microwave biosensor for label-free detection of biomolecules", Sens. Actuators B Chem., vol. 169, pp. 26-31, Jul. 2012.
  25. A. Ebrahimi, W. Withayachumnankul, S. F. Al-Sarawi, D. Abbott, "Microwave microfluidic sensor for determination of glucose concentrtion in water", Proc. IEEE 15th Mediterranean Microw. Symp., pp. 1-3, Nov. 2015.
  26. H. W. Wu, "Label-Free and antibody-free wideband microwave biosensor for identifying the cancer cells", IEEE Trans. Microw. Theory Tech., vol. 64, no. 3, pp. 982-990, Mar. 2016.
  27. T. Nakanishi, M. Matsunaga, A. Kobayashi, K. Nakazato, K. Niitsu, "A fully-integrated circulating tumor cell analyzer using an on-chip vector network analyzer and a transmission-line-based detection window in 65-nm CMOS", Proc. IEEE Biomed. Circuits Syst. Conf., pp. 1-4, Oct. 2017.
  28.  T. Nakanishi, M. Matsunaga, A. Kobayashi, K. Nakazato, K. Niitsu, "A 40-GHz fully integrated circulating tumor cell analysis vector network analyzer in 65-nm CMOS technology with coplanar-line-based detection area", Jpn. J. Appl. Phys., vol. 57, no. 3S2, Jan. 2018.
  29. J. Sun, C. Li, "A highly reconfigurable low-power CMOS directional coupler", IEEE Trans. Microw. Theory Techni., vol. 60, no. 9, pp. 2815-2822, Sep. 2012.
  30. X. Fan, H. Zhang, E. Sánchez-Sinencio, "A noise reduction and linearity improvement technique for a differential Cascode LNA", IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 588-599, Mar. 2008.
  31.  K. Niitsu, S. Ota, K. Gamo, H. Kondo, M. Hori, K. Nakazato, "Development of microelectrode arrays using electroless plating for CMOS-Based direct counting of bacterial and HeLa cells", IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 5, pp. 607-619, Nov. 2015.
  32. T. Kuno, K. Niitsu, K. Nakazato, "Amperometric electrochemical sensor array for on-chip simultaneous imaging", Jpn. J. Appl. Phys., vol. 53, Feb. 2014.
  33. V. Filipe, A. Hawe, W. Jiskoot, "Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates", Pharmaceutical Res., vol. 27, no. 5, pp. 796-810, May 2010.
  34. V. Filipe, A. Hawe, W. Jiskoot, "Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates", Pharmaceutical Res., vol. 27, no. 5, pp. 796-810, May 2010.
  35. Y.-T. Liao, H. Yao, A. Lingley, B. Parviz, B. P. Otis, " A 3- \$mutext{W}\$ CMOS glucose sensor for wireless contact-lens tear glucose monitoring ", IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 335-344, Jan. 2012.
  36. R. Cabrera, I. Weaver, A. Banerjee, R. Sarpeshkar, T. Thorsen, "(Invited) fabrication of implantable glucose fuel cells on silicon wafers", ECS Trans., vol. 72, no. 3, pp. 31-38, May 2016.
  37. S. Arata et al., " Wafer-scale development and experimental verification of 0.36-mm 2 228-mV open-circuit-voltage solid-state CMOS-compatible glucose fuel cell for healthcare IoT application ", Jpn. J. Appl. Phys., vol. 57, pp. 04FM04, Mar. 2018, [online] Available: http://iopscience.iop.org/article/10.7567/JJAP.57.04FM04/meta.
  38. S. Bandyopadhyay, P. P. Mercier, A. C. Lysaght, K. M. Stankovic, A. P. Chandrakasan, "A 1.1 nW energy-harvesting system with 544 pW quiescent power for next-generation implants", IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 2812-2824, Dec. 2014.
  39.  J. Choi et al., " Matching the power voltage and size of biological systems: A nW-scale 0.023-mm 3 pulsed 33-GHz radio transmitter operating from a 5 kT/q-supply voltage ", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 62, no. 8, pp. 1950-1958, Aug. 2015.
  40.  W. Jung et al., "23.3 A 3nW fully integrated energy harvester based on self-oscillating switched-capacitor DC-DC converter", Proc. IEEE Int. Solid-State Circuits Conf., pp. 398-399, Feb. 2014.
  41. K. Niitsu et al., "A self-powered supply-sensing biosensor platform using bio fuel cell and low-voltage low-cost CMOS supply-controlled ring oscillator with inductive-coupling transmitter for healthcare IoT", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 65, no. 9, pp. 2784-2796, Sep. 2018, [online] Available: https://ieeexplore.ieee.org/document/8327508/.
  42. A. Kobayashi et al., " Design and experimental verification of a 0.19 V \$53~mutext{W}\$ 65 nm CMOS integrated supply-sensing sensor with a supply-insensitive temperature sensor and an inductive-coupling transmitter for a self-powered bio-sensing system using a biofuel cell ", IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 6, pp. 1313-1323, Dec. 2017.
  43. A. F. Yeknami et al., " A 0.3V biofuel-cell-powered glucose/lactate biosensing system employing a 180nW 64dB SNR passive \$DeltaSigma\$ ADC and a 920MHz wireless transmitter ", Proc. IEEE Int. Solid-State Circuits Conf., pp. 284-286, Feb. 2018.
  44. X. Chen et al., "A wireless capsule endoscope system with low-power controlling and processing ASIC", IEEE Trans. Biomed. Circuits Syst., vol. 3, no. 1, pp. 11-22, Feb. 2009.
  45. S. B. Lee, H.-M. Lee, M. Kiani, U.-M. Jow, M. Ghovanloo, "An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications", IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 6, pp. 360-371, Dec. 2010.
  46. A. Roy et al., " A \$6.45~mu text{W}\$ self-powered SoC with integrated energy-harvesting power management and ULP asymmetric radios for portable biomedical systems ", IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 6, pp. 862-874, Dec. 2015.
  47. Y. Ogawa et al., "Organic transdermal iontophoresis patch with built-in biofuel cell", Adv. Healthcare Mater., vol. 4, no. 4, pp. 506-510, Mar. 2015.
  48. T. Miyake, S. Yoshino, T. Yamada, K. Hata, M. Nishizawa, "Self-regulating enzyme–nanotube ensemble films and their application as flexible electrodes for biofuel cells", J. Amer. Chem. Soc., vol. 133, no. 13, pp. 5129-5134, Mar. 2011.
  49. T. Miyake et al., "Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms", Energy Environ. Sci., vol. 4, no. 12, pp. 5008-5012, Dec. 2011.
  50. B. I. Rapoport, J. T. Kedzierski, R. Sarpeshkar, "A glucose fuel cell for implantable brain–machine interfaces", PLoS ONE, vol. 7, no. 6, pp. e38436, Jun. 2012.
  51. N. Miura, Y. Kohama, Y. Sugimori, H. Ishikuro, T. Sakurai, T. Kuroda, "A high-speed inductive-coupling link with burst transmission", IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 947-955, Mar. 2009.
  52. Y.-T. Liao, H. Yao, A. Lingley, B. Parviz, B. P. Otis, " A 3- \$mu text{W}\$ CMOS glucose sensor for wireless contact-lens tear glucose monitoring ", IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 335-344, Jan. 2012.
  53. H. Komori, K. Niitsu, J. Tanaka, Y. Ishige, M. Kamahori, K. Nakazato, "An extended-gate CMOS sensor array with enzyme-immobilized microbeads for redox-potential glucose detection", Proc. IEEE Biomed. Circuits Syst. Conf., pp. 464-467, Oct. 2014.
  54. K. Niitsu, S. Ota, K. Gamo, H. Kondo, M. Hori, K. Nakazato, "Development of microelectrode arrays using electroless plating for CMOS-based direct counting of bacterial and HeLa cells", IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 5, pp. 607-619, Oct. 2015.
  55. T. Tokuda et al., "CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel", Biomed. Opt. Exp., vol. 5, no. 11, pp. 3840-3870, Nov. 2014.
  56. F. Zhang, Y. Lian, "QRS detection based on multiscale mathematical morphology for wearable ECG devices in body area networks", IEEE Trans. Biomed. Circuits Syst., vol. 3, no. 4, pp. 220-228, Aug. 2009.
  57. M. Khayatzadeh, X. Zhang, J. Tan, W.-S. Liew, Y. Lian, " A 0.7-V 17.4- \$mu text{W}\$ 3-lead wireless ECG SoC ", IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 5, pp. 583-592, Oct. 2013.
  58. X. Zhang, Y. Lian, "A 300-mV 220-nW event-driven ADC with real-time QRS detection for wearable ECG sensors", IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 6, pp. 834-843, Dec. 2014.
  59. J. Tan, W.-S. Liew, C.-H. Heng, Y. Lian, "A 2.4 GHz ULP reconfigurable asymmetric transceiver for single-chip wireless neural recording IC", IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 4, pp. 497-509, Aug. 2014.
  60. S. Izumi et al., "Normally off ECG SoC with non-volatile MCU and noise tolerant heartbeat detector", IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 5, pp. 641-651, Oct. 2015.
  61. S. Izumi et al., " A wearable healthcare system with a \$13.7~mu text{A}\$ noise tolerant ECG processor ", IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 5, pp. 733-742, Oct. 2015.
  62. K. Niitsu, A. Kobayashi, Y. Ogawa, M. Nishizawa, K. Nakazato, " An energy-autonomous disposable big-data-based supply-sensing biosensor using bio fuel cell and 0.23-V 0.25- \$mu text{m}\$ zero- \$text{V}_{th}\$ all-digital CMOS supply-controlled ring oscillator with inductive transmitter ", IEEE Biomed. Circuits Syst. Conf. (ISSCC) Dig. Tech. Papers, pp. 595-598, Oct. 2015.
  63. N. Miura, D. Mizoguchi, M. Inoue, H. Tsuji, T. Sakurai, T. Kuroda, "A 195Gb/s 1.2W 3D-stacked inductive inter-chip wireless superconnect with transmit power control scheme", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 264-265, Feb. 2005.
  64. A. Iwata et al., "A 3D integration scheme utilizing wireless interconnections for implementing hyper brains", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 262-263, Feb. 2005.
  65. N. Miura et al., "A 1 Tb/s 3 W inductive-coupling transceiver for 3D-stacked inter-chip clock and data link", IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 111-122, Jan. 2007.
  66. K. Niitsu et al., "60% power reduction in inductive-coupling inter-chip link by current-sensing technique", Jpn. J. Appl. Phys., vol. 46, no. 4B, pp. 2215-2219, Apr. 2007.
  67. K. Niitsu et al., "Daisy chain transmitter for power reduction in inductive-coupling CMOS link", IEICE Trans. Electron., vol. E90-C, no. 4, pp. 829-835, Apr. 2007.
  68. D. Hopkins et al., " Circuit techniques to enable 430 Gb/s/mm 2 proximity communication ", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 368-369, Feb. 2007.
  69. A. Fazzi et al., "3D capacitive interconnections with mono- and bi-directional capabilities", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 356-357, Feb. 2007.
  70. Q. Gu, Z. Xu, J. Ko, M.-C. F. Chang, "Two 10Gb/s/pin low-power interconnect methods for 3D ICs", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 448-449, Feb. 2007.
  71. M. Daito et al., "Capacitively coupled non-contact probing circuits for membrane-based wafer-level simultaneous testing", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 144-145, Feb. 2010.
  72. K. Niitsu, S. Kawai, N. Miura, H. Ishikuro, T. Kuroda, "A 65fJ/b inter-chip inductive-coupling data transceivers using charge-recycling technique for low-power inter-chip communication in 3-D system integration", IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 7, pp. 1285-1294, Jul. 2012.
  73. K. Niitsu et al., "An inductive-coupling link for 3D integration of a 90 nm CMOS processor and a 65 nm CMOS SRAM", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 480-481, Feb. 2009.
  74. K. Niitsu et al., "Modeling and experimental verification of misalignment tolerance in inductive-coupling inter-chip link for low-power 3-D system integration", IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 8, pp. 1238-1243, Aug. 2010.
  75. K. Niitsu et al., "Analysis and techniques for mitigating interference from power/signal lines and to SRAM circuits in CMOS inductive-coupling link for low-power 3-D system integration", IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 10, pp. 1902-1907, Oct. 2011.
  76. M. Saen et al., "3-D system integration of processor and multi-stacked SRAMs using inductive-coupling link", IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 856-862, Apr. 2010.
  77. Y. Kohama et al., "A scalable 3D processor by homogeneous chip stacking with inductive-coupling link", Proc. IEEE Symp. VLSI Circuits, pp. 94-95, Jun. 2009.
  78. N. Miura et al., "A 0.55 V 10 fJ/bit inductive-coupling data link and 0.7 V 135 fJ/cycle clock link with dual-coil transmission scheme", IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 965-973, Apr. 2011.
  79. T. A. Wey, M. Southcott, W. D. Jemison, K. MacVittie, E. Katz, " Electrical circuit model and dynamic analysis of implantable enzymatic biofuel cells operating in vivo ", Proc. IEEE, vol. 102, no. 11, pp. 1795-1810, Nov. 2014.
  80. J. A. Stankovic, "Research directions for the internet of things", IEEE Internet Things J., vol. 1, no. 1, pp. 3-9, Feb. 2014.
  81. A. Pantelopoulos, N. G. Bourbakis, "A survey on wearable sensor-based systems for health monitoring and prognosis", IEEE Trans. Syst. Man Cybern. C Appl. Rev., vol. 40, no. 1, pp. 1-12, Jan. 2010.
  82. G. Matzeu, L. Florea, D. Diamond, "Advances in wearable chemical sensor design for monitoring biological fluids", Sens. Actuators B Chem., vol. 211, pp. 403-418, May 2015.
  83. Y. T. Liao, H. Yao, A. Lingley, B. Parviz, B. P. Otis, "A 3-μW CMOS glucose sensor for wireless contact-lens tear glucose monitoring", IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 335-344, Jan. 2012.
  84. M. M. Ahmadi, G. A. Jullien, "A wireless-implantable microsystem for continuous blood glucose monitoring", IEEE Trans. Biomed. Circuits Syst., vol. 3, no. 3, pp. 169-180, Jun. 2009.
  85. R. J. M. Vullers, R. van Schaijk, I. Doms, C. V. Hoof, R. Mertens, "Micropower energy harvesting", Solid-State Electron., vol. 53, no. 7, pp. 684-693, Jul. 2009.
  86. S. Bandyopadhyay, P. P. Mercier, A. C. Lysaght, K. M. Stankovic, A. P. Chandrakasan, "A 1.1 nW energy-harvesting system with 544 pW quiescent power for next-generation implants", IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 2812-2824, Dec. 2014.
  87. R. F. Drake, B. K. Kusserow, S. Messinger, S. Matsuda, "A tissue implantable fuel cell power supply", Trans. Amer. Soc. Artif. Internal Organs, vol. 16, pp. 199-205, Apr. 1970.
  88. B. I. Rapoport, J. T. Kedzierski, R. Sarpeshkar, "A glucose fuel cell for implantable brain–machine interfaces", PLOS One, vol. 7, no. 6, Jun. 2012.
  89. Y. Ogawa et al., "Organic transdermal iontophoresis patch with built-in biofuel cell", Adv. Healthcare Mater., vol. 4, no. 4, pp. 506-510, Mar. 2015.
  90. W. Jia, G. Valdés-Ramírez, A. J. Bandodkar, J. R. Windmiller, J. Wang, "Epidermal biofuel cells: Energy harvesting from human perspiration", Angew. Chem. Int. Ed., vol. 52, no. 28, pp. 7233-7236, May 2013.
  91. M. Zhou, "Recent progress on the development of biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review", Electroanalysis, vol. 27, no. 8, pp. 1786-1810, Jun. 2015.
  92. N. Mano, F. Mao, A. Heller, " Characteristics of a miniature compartment-less glucose-O 2 biofuel cell and its operation in a living plant ", J. Amer. Chem. Soc., vol. 125, no. 21, pp. 6588-6594, Apr. 2003.
  93. K. MacVittie et al., "From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells", Energy Environ. Sci., vol. 6, no. 1, pp. 81-86, Jan. 2013.
  94. K. Niitsu, A. Kobayashi, Y. Ogawa, M. Nishizawa, K. Nakazato, "An energy-autonomous disposable big-data-based supply-sensing biosensor using bio fuel cell and 0.23-V 0.25-μm zero-Vth all-digital CMOS supply-controlled ring oscillator with inductive transmitter", Proc. IEEE Biomed. Circuits Syst. Conf., pp. 595-598, Oct. 2015.
  95. A. Kobayashi, K. Ikeda, Y. Ogawa, M. Nishizawa, K. Nakazato, K. Niitsu, "An energy-autonomous bio-sensing system using a biofuel cell and 0.19 V 53 μW 65 nm-CMOS integrated supply-sensing sensor with a supply-insensitive temperature sensor and inductive-coupling transmitter", Proc. IEEE Biomed. Circuits Syst. Conf., pp. 148-151, Oct. 2016.
  96. P. P. Mercier, S. Bandyopadhyay, A. C. Lysaght, K. M. Stankovic, A. P. Chandrakasan, "A sub-nW 2.4 GHz transmitter for low data-rate sensing applications", IEEE J. Solid-State Circuits, vol. 49, no. 7, pp. 1463-1474, Jul. 2014.
  97. Y.-S. Lin, D. Sylvester, D. Blaauw, "A sub-pW timer using gate leakage for ultra low-power sub-Hz monitoring systems", Proc. IEEE Custom Integr. Circuits Conf., pp. 397-400, Sep. 2007.
  98. Y. Lee, B. Giridhar, Z. Foo, D. Sylvester, D. B. Blaauw, "A sub-nW multi-stage temperature compensated timer for ultra-low-power sensor nodes", IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2511-2521, Oct. 2013.
  99. H. Wang, P. P. Mercier, "A reference-free capacitive-discharging oscillator architecture consuming 44.4 pW/75.6 nW at 2.8 Hz/6.4 kHz", IEEE J. Solid-State Circuits, vol. 51, no. 6, pp. 1423-1435, Jun. 2016.
  100. M. K. Law, A. Bermak, H. C. Luong, "A sub-μW embedded CMOS temperature sensor for RFID food monitoring application", IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1246-1255, Jun. 2010.
  101. S. Jeong, Z. Foo, Y. Lee, J.-Y. Sim, D. Blaauw, D. Sylvester, "A fully-integrated 71 nW CMOS temperature sensor for low power wireless sensor nodes", IEEE J. Solid-State Circuits, vol. 49, no. 8, pp. 1682-1693, Aug. 2014.
  102. M. Seok, G. Kim, D. Blaauw, D. Sylvester, "A portable 2-transistor picowatt temperature-compensated voltage reference operating at 0.5 V", IEEE J. Solid-State Circuits, vol. 47, no. 10, pp. 2534-2545, Oct. 2012.
  103. K. Niitsu et al., "An inductive-coupling link for 3D integration of a 90nm CMOS processor and a 65 nm CMOS SRAM", Proc. IEEE Int. Solid-State Circuits Conf., pp. 480-481, Feb. 2009.
  104. N. Miura, D. Mizoguchi, T. Sakurai, T. Kuroda, "Analysis and design of inductive coupling and transceiver circuit for inductive inter-chip wireless superconnect", IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 829-837, Apr. 2005.
  105. S. S. Mohan, M. M. Hershenson, S. P. Boyd, T. H. Lee, "Simple accurate expressions for planar spiral inductances", IEEE J. Solid-State Circuits, vol. 34, no. 10, pp. 1419-1424, Oct. 1999.
  106. G. Valdés-Ramírez et al., "Microneedle-based self-powered glucose sensor", Electrochem. Commun., vol. 47, pp. 58-62, Oct. 2014.